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Abstract

In this study we introduce a new approach named importance sampling or quick simulations. The method has been extensively

used in communication theory in estimating probability of rare events. The basic idea behind importance sampling techniques is that

certain values of the input random variables (or vectors) have more important impact on the parameters being estimated than others,

and if these ‘‘important’’ values are sampled more frequently than others, i.e., sampled from a biased density function, the variance of

the estimator can be reduced. The outputs from simulations are then weighted to correct such biased sampling. Two illustrative

examples are given to show the general procedure of the importance sampling approach as well as its applicability to subsurface flow

and transport problems. In one example we estimated the mean and variance of hydraulic head for one-dimensional flow, and in the

other we estimated the probability of a particle’s travel time t less than a given critical value T . In both examples, we compared results

from analytical solutions, the conventional Monte Carlo (CMC) simulations, and the importance sampling approach. It is shown that

when an importance density function is chosen appropriately, importance sampling techniques may be many orders of magnitude

more efficient than the CMC simulations and have a great potential in simulating subsurface flow and transport.
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1. Introduction

It is well known that geological formations are

ubiquitously heterogeneous, and the equations describ-

ing flow and transport in these formations are stochas-

tic. Stochastic approaches to flow and transport in

heterogeneous porous media have been extensively
studied in the last two decades, and many stochastic

models have been developed [4,6,19]. These models can

be classified into two groups: Monte Carlo simulations

and moment-equation approaches. Monte Carlo simu-

lation is a conceptually straightforward approach to

solve these stochastic partial differential equations by

generating a large number of equally likely random re-

alizations of the parameter fields, solving deterministic
flow and transport equations for each realization, and

averaging the results over all realizations to obtain

sample moments of the solution. This approach has the

advantages of applying to a very broad range of both

linear and nonlinear flow and transport problems, but

has a number of potential drawbacks.

A major disadvantage of the Monte Carlo method,

among others, is the requirement for large computa-

tional effort. To properly resolve high frequency space–

time fluctuations in random parameters, it is necessary

to employ fine numerical grids in space–time. Therefore,
computational effort for each realization is usually large,

especially if both physical and chemical heterogeneities,

as well as uncertainties in initial and boundary condi-

tions, are considered. To ensure sample output moments

converge to their theoretical ensemble values, a large

number of Monte Carlo simulations are often required

(typically a few thousand realizations, depending on the

degree of medium heterogeneity), which dramatically
increases the computation burden.

One alternative to Monte Carlo simulations is an

approach based on moment equations, the essence of

which is to derive a system of deterministic partial dif-

ferential equations governing the first two moments

(mean and covariance), and then solve them analytically

or numerically [3,4,7,11,17–20].
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Though the moment-equation-based approach (based

on perturbation methods) in many cases works well for

relatively large variations in the medium properties

[10,16,21], this approach in general is restricted to small

variabilities of medium properties. Although the mo-
ment equation approach may render accurate solutions

with coarser numerical grids (of fewer nodes) than the

Monte Carlo method, it must solve covariance equa-

tions as many times as the number of nodes. Thus, this

approach can also be computationally demanding, in

particular, for large-size problems.

In this study we introduce a new approach named

importance sampling or quick simulations for the pur-
pose of solving problems of flow and transport in ran-

dom porous media. The importance sampling method is

one of variance reduction techniques and it has been

extensively used in communication theory in simulating

rare events [1,9,13]. The basic idea behind importance

sampling techniques is that certain values of the input

random variables (or vectors) have more important

impact on the quantities being estimated than others,
and if these ‘‘important’’ values are sampled more fre-

quently, i.e., sampled from a biased density function, the

variance of the estimator can be reduced. The outputs

from simulations are then weighted to correct the bias

caused by sampling from the biased density function. A

detailed mathematical framework for importance sam-

pling is given in [8] and a thorough review on this topic

can be found in [14].
The organization of this paper is as follows. In Sec-

tion 2, we review the principle of importance sampling

techniques in estimating mean quantities and develop

for the first time a similar principle for estimating their

associated variances. We also discuss in this section the

choice of importance density functions. Two examples

are given in Section 3 to illustrate the general procedure

of the importance sampling approach and its applica-
bility to subsurface flow and transport problems. In one

example we estimated the mean and variance of hy-

draulic head for one-dimensional flow, and in the other

we estimated the probability of a particle’s travel time t
less than a given critical value T . In both examples, we

compared results from analytical solutions, the con-

ventional Monte Carlo (CMC) simulations, and the

importance sampling approach. It is shown that in the
cases where the importance density function is chosen

appropriately, the importance sampling technique may

be many orders of magnitude more efficient than the

CMC simulations.

2. Principle of importance sampling techniques

The purpose of the importance sampling techniques is

to obtain accurate estimate of quantities (such as mean

hydraulic head and head variance) with fewer samples

than required in the CMC method. There are two major

steps involved in the importance sampling techniques.

One is distortion of the original input process. Instead of

taking samples from the original probability density
function (pdf), samples are taken from some other pdf,

called importance density functions, such that some

‘‘important’’ regions of the sample space get more

samples. The fundamental issue in implementing the

importance sampling techniques is the choice of biased

importance density functions. The other is correction of

the distortion by averaging the output from different

samples (realizations) using weights that are related to
the distortion, such that the mean of the quantity being

estimated is preserved.

Let Y denote a random variable (or vector) with a

(joint) pdf f ðyÞ. Here Y may represent properties of

porous media, such as log hydraulic conductivity, at

discretized grid nodes. We wish to derive the moments

of function h ¼ gðYÞ, where g is a specified, determin-

istic function (operator). For example, g can be a nu-
merical solver that maps a log hydraulic conductivity

field Y into a head or velocity field h, under some given

boundary and initial conditions.

2.1. Mean estimation

By definition, the mean and variance of h can be

written as

lh ¼ E½h� ¼ E½gðYÞ� ¼
Z
X
gðyÞf ðyÞdy; ð1Þ

r2
h ¼ Ef½gðYÞ � lh�

2g ¼
Z
X
½gðyÞ � lh�

2f ðyÞdy

¼
Z
X
g2ðyÞf ðyÞdy� l2

h; ð2Þ

where X is a probability space, and E represents statis-
tical expectation. Note that both lh and r2

h depend on

the problem itself and are independent of the way one

estimates them. To estimate the mean from Eq. (1) using

the CMC method, one samples randomly a sequence of

yi, i ¼ 1; 2; . . . ;N , from the density function f ðyÞ and

computes the sample mean

�hhN ¼ 1

N

XN
i¼1

gðyiÞ: ð3Þ

Since yi, i ¼ 1; 2; . . . ;N are independent identically dis-

tributed random variables, it can be shown that

E½�hhN � ¼ lh, i.e.,
�hhN is an unbiased estimator of lh, and

the variance of the estimator �hhN is r2
MC ¼ r2

h=N . Because

r2
h is unknown, it is usually estimated using

S2
h;N ¼ 1

N

XN
i¼1

g2ðyiÞ � �hh2N : ð4Þ
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By the Central Limit Theorem, in the limit N ! 1, the

probability density of ð�hhN � lhÞ=ðrh=
ffiffiffiffi
N

p
Þ tends to a

standard Gaussian distribution Nð0; 1Þ. Thus we expect
�hhN to lie within �rh=

ffiffiffiffi
N

p
around lh with the probability

of 68%, if N is sufficiently large. From this, we can
estimate the minimum number of simulations required

to obtain the mean estimation with a given accuracy.

Let N�;MC denote the minimum number of simulations

required to obtain a 100� �% precision, then

N�;MC ¼ dr2
h=l

2
h�

2e; ð5Þ

where dxe is the least integer P x. For instance, if we

need the estimation to be within 10% around the exact

value, the minimum number of required simulations

should be N0:1;MC ¼ dr2
h=l

2
h�

2e ¼ d100r2
h=l

2
he.

Because the statistical error rh=
ffiffiffiffi
N

p
is inversely pro-

portional to
ffiffiffiffi
N

p
, if we wish to reduce it by a factor of

two we have to increase the sample size by a factor of

four. Certainly, the rate of convergence of the CMC

method is rather slow. It is desirable if we can design

some ways to reduce the estimation variance more

rapidly as N increases.

The importance sampling technique is one of such
ways that reduce the estimation variance (called vari-

ance reduction techniques) and thus reduce the statisti-

cal error much faster than the CMC techniques. The

efficiency of the importance sampling techniques de-

pends on the selected importance density functions. The

essence of importance sampling is to avoid taking

samples y in regions where the impact of the value of the

function gðyÞ to the quantity being estimated is negli-
gible but to concentrate on (important) regions where

the impact is large. This operation will inevitably in-

troduce bias (or, distortion), which is to be corrected

by weighting the sample values appropriately.

Suppose we sample yi, i ¼ 1; 2; . . . ;N , from an im-

portance density function f1ðyÞ rather than the original

density function f ðyÞ, where f1ðyÞ is zero only if f ðyÞ is
zero. To preserve the mean (i.e., to correct the bias) one
has to modify the original score function gðyÞ. A mod-

ified score function H ¼ g1ðYÞ is defined as

g1ðyÞ ¼ gðyÞw1ðyÞ; ð6Þ

where w1ðyÞ ¼ f ðyÞ=f1ðyÞ is called a weight function.

The expectation of H under density f1ðyÞ can be deter-
mined

lH ¼ E½H � ¼ E½g1ðYÞ� ¼
Z
X
g1ðyÞf1ðyÞdy

¼
Z
X
gðyÞ f ðyÞ

f1ðyÞ
f1ðyÞdy ¼

Z
X
gðyÞf ðyÞdy ¼ lh; ð7Þ

which means that the mean remains the same though the

samples are taken biasedly from the importance density

function f1ðyÞ. The variance H under density f1ðyÞ is

r2
H ¼ Ef½g1ðYÞ � lH �

2g ¼
Z
X
½g1ðyÞ � lH �

2f1ðyÞdy

¼
Z
X
g21ðyÞf1ðyÞdy� l2

H

¼
Z
X

f ðyÞ
f1ðyÞ

" #
g2ðyÞf ðyÞdy� l2

H : ð8Þ

From (7) one can construct an estimator for lh based on

samples yi, i ¼ 1; 2; . . . ;N :

HN ¼ 1

N

XN
i¼1

g1ðyiÞ ¼
1

N

XN
i¼1

gðyiÞw1ðyiÞ; ð9Þ

i.e., the contribution of sample yi in HN is weighted by

w1ðyiÞ and the bias due to sampling from the biased

importance density function has been corrected. The

variance of the estimator HN is r2
IS ¼ r2

H=N , where r2
H

can be estimated using

S2
H ;N ¼ 1

N

XN
i¼1

g2ðyiÞw2
1ðyiÞ � H

2

N : ð10Þ

Similar to equation (5), the minimum number of simu-

lations required to obtain an estimation of E½g� with a

100� �% precision is

N�;IS ¼ dr2
IS=l

2
H �

2e: ð11Þ

The ratio of variances c ¼ r2
MC=r

2
IS ¼ N�;MC=N�;IS is a

measure of the efficiency (performance) of the impor-

tance sampling, which depends on the choice of the

importance density function. Here r2
MC ¼ r2

h=N is the

estimation variance of the CMC method. It should be

noted by comparison between (8) and (2) that if we

choose the importance density function f1ðyÞ properly
such that the weight function w1ðyÞ on average is sub-

stantially less than unity, r2
H and thus the variance of the

estimator r2
IS ¼ r2

H=N will be reduced. This means that,

comparing to the CMC method, sampling from the

importance density function may allow us to estimate

the mean with a small sample size for a given accuracy,

or with a much better accuracy for a given sample size.

In fact, as will be shown later, the Monte Carlo ap-
proach based on importance sampling techniques makes

it possible to solve some problems that cannot be solved

by the CMC simulation.

We should emphasize here that uncertainties associ-

ated with modeling applications can be classified as

‘‘reducible’’ and ‘‘irreducible’’. Natural uncertainty is

‘‘inherited’’ or irreducible, while data and model un-

certainties contain both reducible and irreducible com-
ponents. By the term ‘‘variance reduction’’ we refer to

reduction of estimation variance, i.e., the variance of the

estimator or model uncertainty, not the variance inher-

ited from uncertainties in system parameters. For in-

stance, in evaluating an integral
R b
a f ðxÞdx numerically,

one may discretize interval ½a; b� using N points that can
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be either uniformly or randomly distributed in ½a; b� and
then calculate

P
f ðxiÞDxi. The accuracy of this estima-

tion depends on the number of points, N , and the dis-

tribution of these points in ½a; b�. A good estimator may

require less computation time, converge faster to the
true value, and thus have a smaller estimation variance.

Note that here the variance caused by uncertainties is

not involved, because the value of the integral is a de-

terministic quantity. In general, the variance due to

parameter uncertainties cannot be reduced unless more

information about system parameters is added. For ex-

ample, if we are interested in estimating mean head for

given uncertainty of hydraulic conductivity, the variance
introduced by the spatial variability of hydraulic con-

ductivity cannot be reduced unless more information,

such as more measurements on hydraulic conductivity,

is provided. Of course, we may be able to design a good

estimator (such as importance sampling) such that the

estimator converges to the true value faster, i.e., reduc-

ing the variance of the estimator.

2.2. Variance estimation

Unlike in communication systems where the mean,

bit error rate, is the main quantity to be estimated, in

hydrology it is often needed to estimate the variance

associated with the mean prediction. Because impor-

tance sampling techniques do not preserve variance (i.e.,
r2
H is in general not equal to r2

h), if we want to estimate

variance r2
h, we will have to re-formulate the expression

for variance. From Eq. (2) we have

r2
h ¼ Ef½gðYÞ � lh�

2g ¼
Z
X
g2ðyÞf ðyÞdy� l2

h

¼
Z
X

f1ðyÞ
f ðyÞ g

2
1ðyÞf1ðyÞdy� l2

H ; ð12Þ

where lh has been replaced by lH because they are the

same. In Eq. (12), for any y such that f ðyÞ � 0, from Eq.

(6), g1ðyÞ must be zero. From Eq. (12), if we take sam-

ples yi, i ¼ 1; 2; . . . ;N , from an importance density

function f1ðyÞ, then the original variance r2
h may be es-

timated using the following expression:

S2
h;N ¼ 1

N

XN
i¼1

f1ðyiÞ
f ðyiÞ

g21ðyiÞ � H
2

N

¼ 1

N

XN
i¼1

g2ðyiÞw1ðyiÞ � H
2

N : ð13Þ

A comparison with Eq. (10) reveals that the reduction of
variance S2

H ;N in Eq. (10) is due to the fact that g2ðyÞ is
weighted by w2

1ðyÞ in S2
H ;N rather than by w1ðyÞ as in S2

h;N

in Eq. (13).

It should be noted that, though Eq. (13) gives cor-

rected estimation of variance, the rate of convergence of

estimator S2
h;N in Eq. (13) to r2

h as n ! 1 may not

necessarily be optimized, because the importance density

function f1ðyÞ discussed above is selected for the pur-

pose of preserving the mean quantity lH ¼ lh while re-

ducing the computational effort by minimizing Eq. (8).

In some special cases, as shown in case 2 in the next
section, the score function gðyÞ is an indicator function

thus g2ðyÞ � gðyÞ, and from Eq. (2) we have r2
h ¼

lHð1� lH Þ. Therefore, in this case once we have esti-

mated lH , the variance can be easily calculated without

resorting to Eq. (13).

However, in general, from Eq. (2), if one wishes to

estimate r2
h using smaller number of simulations, one

may need to construct a new importance density func-
tion f2ðyÞ to estimate the mean of g2ðyÞ, just as we

construct f1ðyÞ to estimate the mean of gðyÞ. Suppose we
sample yi, i ¼ 1; 2; . . . ;N , from an importance density

function f2ðyÞ, a function to be determined. Again, f2ðyÞ
is zero at y only if f ðyÞ is zero. By defining

g2ðyÞ ¼ gðyÞw2ðyÞ, where w2ðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðyÞ=f2ðyÞ

p
, the last

integral in Eq. (2) becomes

E½h2� ¼ E½g2ðYÞ� ¼
Z
X
g2ðyÞf ðyÞdy

¼
Z
X
g22ðyÞf2ðyÞdy; ð14Þ

which means that the mean of g2ðyÞ under distribution
f ðyÞ is preserved by the mean of g22ðyÞ under distribution
f2ðyÞ. Therefore, the variance r2

h is preserved under

distribution f2ðyÞ. From the last integral of Eq. (14),

E½h2� can be estimated by

h2N ¼ 1

N

XN
i¼1

g22ðyiÞ ¼
1

N

XN
i¼1

g2ðyiÞw2
2ðyiÞ: ð15Þ

Therefore, instead of using Eq. (13) one may use the

following expression to estimate r2
h in Eq. (2)

S2
h;N ¼ 1

N

XN
i¼1

g2ðyiÞw2
2ðyiÞ � H

2

N ; ð16Þ

where HN is estimated from Eq. (9) using weighting

function w1ðyÞ, and samples yi, i ¼ 1; 2; . . . ;N , are taken

from the importance density f2ðyÞ. The latter can be
selected by minimizing the variance

r2
h2;IS ¼

Z
X
½g22ðyÞ � E½h2��2f2ðyÞdy

¼
Z
X
g4ðyÞw4

2ðyÞf2ðyÞdy� ðE½h2�Þ2

¼
Z
X

f ðyÞ
f2ðyÞ

g4ðyÞf ðyÞdy� ðE½h2�Þ2: ð17Þ

The variance r2
h2;IS of estimator S2

h;N can be estimated

from importance samples yi:

S2
h2;IS ¼

1

N

XN
i¼1

g4ðyiÞw4
2ðyiÞ � ðh2N Þ2: ð18Þ

1180 Z. Lu, D. Zhang / Advances in Water Resources 26 (2003) 1177–1188



To our best knowledge, the importance sampling pro-

cedure for variance estimation in (16) and (17) is de-

veloped for the first time. In a special case where gðyÞ is
an indicator function, g2ðyÞ ¼ gðyÞ, thus E½h2� ¼
E½g2ðyÞ� ¼ E½gðyÞ� ¼ lh. A comparison of the last inte-
grals of Eqs. (8) and (17) reveals that in this case the

importance density that minimizes Eq. (8) will also

minimize Eq. (17), i.e., f2ðyÞ ¼ f1ðyÞ. In general, f2ðyÞ is,
however, different from f1ðyÞ.

In summary, to estimate a mean quantity using the

importance sampling techniques, one chooses an im-

portance density function f1 such that r2
H in Eq. (8) or

S2
H ;N in Eq. (10) is minimized, samples y from f1ðyÞ, and

computes HN in Eq. (9) as an estimate of lh. Similarly,

to efficiently estimate variance r2
h, one finds f2 such that

r2
h2;IS in (17) or S2

h2;IS in (18) is minimized, takes samples

from f2, and estimates r2
h using S2

h;N in (16).

2.3. Selection of importance density functions

One important question that remains is how to
choose the importance density function such that the IS

estimator has a smaller variance than the CMC esti-

mator. Here we limit our discussion on selection of f1ðyÞ
which minimizes Eq. (8) and reduces computational ef-

fort in estimating mean quantity lh. A similar procedure

can also be applied to selection of f2ðyÞ that minimizes

Eq. (17) and reduces the number of simulations required

in estimating variance r2
h. Ideally, if one chooses

f1ðyÞ ¼ gðyÞf ðyÞ=lh, then from Eq. (8) it follows that

r2
H � 0. Though f1ðyÞ defined here contains lh that is the

quantity being estimated and thus cannot be used in

practice, it does give us some clues about how to con-

struct an importance density function.

It is seen from Eq. (8) that it is difficult to minimize

r2
H directly as a function of an unknown function f1ðyÞ.

A practical alternative is to choose f1ðyÞ from a family
of candidates for which sampling yi and evaluating

w1ðyÞ are relatively easy. In addition, choosing f1ðyÞ
from a family of candidates makes it possible in some

cases to derive an analytical expression for r2
H .

If the original distribution is Gaussian, then the

family of Gaussian distributions should be a natural

choice. Two major approaches have been used in liter-

ature, i.e, variance scaling (VS) [5] and mean translation

(MT) [9], or their combination. The concepts of MT and

VS are illustrated in Fig. 1, where f ðxÞ is the original

density function. Suppose the problem being concerned
is related to a small probability Prðx < x0Þ, the CMC

simulation that takes samples from f ðxÞ will not be very
efficient, because it is very hard to take a sample from

f ðxÞ such that x < x0 when x0 is very small. By MT, one

simply shifts the mean of f ðxÞ to x0, thus the frequency

to take samples from x < x0 from the new density

function f1ðxÞ has been increased (Fig. 1(a)). Another

way to enlarge the sampling frequency for x < x0 is to
increase variance (Fig. 1(b)). Fig. 1(c) illustrates the

combination of MT and VS. Discussion on advantages

and disadvantages of MT and VS can be found in lit-

erature [1,2,14]. In some cases, as showed by Chen et al.

[2], VS in combination with optimized MT can add a

degree of robustness with respect to severe nonlinearity.

It is difficult in general to analytically derive expres-

sions for optimal parameters at which r2
H in Eq. (8) is

minimized, even when the form of f ðxÞ is relatively

simple. In practice, the optimal parameter values can be

obtained numerically. For example, suppose the original

distribution is Nðl; r2Þ, to find the optimal MT, one may

choose a set of li, i ¼ 1; 2; . . . ;m, that spans the range of
l, take samples from Nðli; r

2Þ, and for each li compute

S2
H ;N defined in Eq. (10). The lk corresponding to the

minimum value of S2
H ;N among all m values is considered

as the optimal mean lopt for the optimal density func-

tion.

An alternative is an iterative approach called Spa-

nier’s technique proposed by Spanier [15] for optimizing

a parameter through processing of the Monte Carlo

results from a relatively small samples. Expressing the

last integral in Eq. (8) as

M2ðliÞ ¼
Z
X

g2ðyÞf 2ðyÞ
f1ðy; liÞf1ðy; ~llÞ

f1ðy; ~llÞdy; i ¼ 1; 2; . . . ;m

ð19Þ

where ~ll is a guess value of the parameter l, and li are

parameter values that span the most likely range of l.
Now start from the initial guess ~ll, take samples yj,

x

(a)
f(x)

f1(x)

x0 x

(b)

f1(x)

f(x)

x0 x

(c)

f1(x)

f(x)

x0

Fig. 1. Schematic diagrams showing: (a) MT, (b) VS, and (c) their combination in one dimension. Shaded area indicates the effective IS probability

mass.
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j ¼ 1; 2; . . . ;N , from an importance density f1ðy; ~llÞ, and
compute

M2ðliÞ ¼
1

N

XN
j¼1

g2ðyjÞf 2ðyjÞ
f1ðyj; liÞf1ðyj; ~llÞ

; i ¼ 1; 2; . . . ;m

ð20Þ

The new guess value for the next iteration ~ll ¼ lk at

which M2ðlkÞ in Eq. (20) is the minimum among m
values of M2ðliÞ, i ¼ 1; 2; . . . ;m. Repeat this process

until ~ll converges. Similar procedure can be applied to

finding the optimal variance r2
IS of the importance

density, or to obtaining both lIS and r2
IS.

3. Illustrative examples

In the section we attempt to illustrate the power of

importance sampling techniques using two simple ex-

amples for flow and transport in one-dimensional po-

rous media whose hydraulic properties are random
constants rather than correlated random fields. One of

the major reasons for choosing such simple examples is

that analytical solutions for these examples are avail-

able, and therefore they can serve as the basis for

comparing effectiveness of the conventional and IS-

based Monte Carlo (ISMC) simulations. Another rea-

son is that no clear strategy is yet available to optimally

select importance density functions for correlated ran-
dom fields, which shall be a topic of future research.

Nevertheless, to our best knowledge these examples

constitute first applications of importance sampling

Monte Carlo techniques to subsurface flow and trans-

port problems.

3.1. Head moments of 1D flow

In our first example, denoted as case 1, we consider a
one-dimensional horizontal flow with prescribed deter-

ministic influx q0 on the left and prescribed deterministic

constant head H1 on the right. We assume that the log

saturated hydraulic conductivity Y ¼ lnKs is a random

constant, being a constant in the physical space but

varying in the probability space with a normal distri-

bution NðhY i; r2
Y Þ. For this case, as shown in Appendix

A, the mean hydraulic head hhðxÞi can be expressed as

hhðxÞi ¼ H1 þ q0ðx� LÞe�hY iþr2Y =2 ð21Þ

where x is the coordinate with x ¼ 0 at the left bound-

ary, and the head variance

r2
h ¼ q20ðx� LÞ2e�2hY iþr2Y ðer2Y � 1Þ: ð22Þ

Note that Eqs. (21) and (22) are exact solutions because

there is no approximation involved in deriving these
solutions, and therefore they are considered as refer-

ences for comparison between the CMC and ISMC

approaches. The parameters in our example are given

as: q0 ¼ 0:1 m/day, H1 ¼ 8:0 m, L ¼ 100:0 m, hY i ¼
�3:0, i.e., KG ¼ 0:04979 m/day, and r2

Y ¼ 2:0.
First, we need to find two pairs of optimal means

and variances, one for importance sampling function

f1ðyÞ and the other for f2ðyÞ. We take samples Yi,
i ¼ 1; 2; . . . ;N , from a distribution NðhYISi; r2

Y ;ISÞ, cal-

culate gðx; YiÞ according to gðx; YiÞ ¼ hðx; YiÞ ¼ H1 þ
q0ðx� LÞ expð�YiÞ, and then compute sample variance

S2
H ;N and S2

h2;IS using Eqs. (10) and (18), respectively. This

procedure is repeated for different values of hYISi ¼ hYji,
j ¼ 1; 2; . . . ;m, and r2

Y ;IS ¼ r2
k , k ¼ 1; 2; . . . ; n. Find op-

timal parameters that minimize Eqs. (10) and (18), i.e.,

those parameters corresponding to minimum S2
H ;N and

S2
h2;IS among m� n values. The dependence of S2

H ;N and

S2
h2;IS on hYISi and r2

Y ;IS is illustrated in Fig. 2(a) and (b),

showing two contour maps for S2
H ;N and S2

h2;IS, respec-

tively. It is found that the optimized importance density

f1ðyÞ is Nð�3:8; 3:0Þ and f2ðyÞ is Nð�5:9; 4:7Þ, both of

which greatly deviate from the original distribution

Nð�3:0; 2Þ. It is understandable that the large variance

in importance density functions of Y represents the need
to enlarge the tail from the original distribution, i.e., the
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Fig. 2. Contour maps showing dependence of: (a) S2
H ;N and (b) S2

h2 ;IS on parameters hYISi and r2
Y ;IS of importance density functions. Optimal hYISi and

r2
Y ;IS are determined from the minimum S2

H ;N and S2
h2 ;IS in the maps.
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Y samples from the tails have larger impact on mean

head than that of samples which are closer to the mean.

While the left shift of the mean value, i.e., smaller hYISi,
may imply that small values of Y have more ‘‘impor-

tant’’ contribution to the mean head.
Figs. 3 and 4 compare mean head and head variance

at the left boundary (x ¼ 0) of the one-dimensional

domain obtained from different approaches: the CMC

simulation (CMC, 106 simulations), IS-based Monte

Carlo simulation (ISMC, 105 simulations) for two sets

of samples taken from f1ðyÞ and f2ðyÞ, respectively. As a

reference, the corresponding analytical solutions, i.e.,

Eqs. (21) and (22), are also shown in the figures. The
figures show that ISMC simulation are several orders of

magnitude more efficient than the CMC simulation. In

addition, it seems that a smaller number of (IS-based)

simulations is required for estimating mean head than

for head variance. A few hundreds of simulations are

enough for estimating the mean while thousands of

simulations are needed for estimating the head variance.

Furthermore, Fig. 4 indicates that for estimating the
head variance the optimized importance density func-

tion f2ðyÞ that minimizes r2
h2;IS in equation (17) is more

efficient than f1ðyÞ that minimizes equation (8). Like-

wise, it is seen from Fig. 3 that f1ðyÞ is more efficient

than f2ðyÞ in estimating the mean head. Figs. 5 and 6

convey the similar information as Figs. 3 and 4 but for

the profiles of mean head and head variance in the 1D

domain.
The performance of the CMC and ISMC approaches

for estimating the mean head and the head variance at

the left boundary for different levels of precision � (here
� ¼ 0:1 means that the estimated values is within �10%

of the exact value) is tabulated in Table 1. The superior

performance of the ISMC over the CMC is clearly evi-

dent. For example, in estimating the mean head at

� ¼ 0:1 and 0.05 levels, it takes just one run for the
ISMC (using f1ðyÞ) while it takes 552 and 2342 runs for

the CMC to achieve the same levels of precision. Simi-

larly, in estimating the head variance, the ISMC (using

NMC
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Fig. 3. Comparison of the rate of convergence for mean head at the

left boundary obtained from different methods.
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f2ðyÞ) is several orders of magnitude more efficient than

the CMC for all levels of precision.

Although the Monte Carlo approach based on im-

portance sampling converges much faster than the CMC

approach, computational effort is needed in accurately

determining the optimal importance densities. Here we

investigated the effect of possible deviation from the

optimal density. Figs. 7 and 8 show convergence of
mean head and head variance at the left boundary re-

sulted from ISMC simulations with importance densities

f1ðyÞ and f2ðyÞ that are different from their optimal

densities. Though simulations with the optimal density

functions work much better (comparing to the analytical

value) than those with density functions that are devi-

ated from the optimal one, all of them are several orders

of magnitude more efficient than the CMC simulation.

This implies that it may not be necessarily to obtain a

very accurate estimation of parameters of the impor-

tance density function and that the sampling intervals

for constructing such contour maps as Fig. 2 can be
relatively large, thus allowing great savings in compu-

tational efforts for determining suboptimal importance

density functions.

3.2. Particle travel time

In this example, we consider a case with a similar

boundary configurations as in case 1, but here we as-

sume that porosity / is a random constant following a

normal distribution Nðl/; r
2
/Þ and we are interested in

the probability of particle’s travel time less than a given

value T . Since porosity / is a random variable, so is
travel time t ¼ L=ðq=/Þ ¼ L/=q. In fact, the travel time

t � NðLl/=q; L
2r2

/=q
2Þ. The probability P ðt < T Þ can be

written explicitly as

PT ¼ P ðt < T Þ ¼ P
L
q
/

�
< T

�
¼ P /

 
<

Tq
L

!

¼ U
Tq=L� l/

r/

� �
ð23Þ

where UðxÞ is the cumulative density function of the

standard normal distribution. Eq. (23) is a basis in

comparing effectiveness of the CMC and ISMC simu-

lations.

Now if we want to estimate PT using Monte Carlo
simulation, we rewrite PT as

PT ¼ P ðt < T Þ ¼ P /

�
<

Tq
L

�
¼
Z Tq

L

�1
f ð/Þd/

¼
Z 1

�1
gð/Þf ð/Þd/ ð24Þ

where f ð/Þ is the pdf of variable /, i.e., Nðl/; r
2
/Þ, and

gð/Þ is a score function defined as gð/Þ ¼ 1 if /6 Tq=L,
and 0 otherwise. Eq. (24) relates PT to the mean of the

score function gð/Þ under density f ð/Þ. The variance of
gð/Þ can be determined from

NMC
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Table 1

Comparison of CMC and ISMC on the number of simulations required for different levels of precision

hhi r2
h

� 0.1 0.05 0.01 0.1 0.05 0.01

CMC 552 2342 21,200 61,301 506,600 >107

IS, f1ðxÞ 1 1 79 2374 67,746 223,284

IS, f2ðxÞ 77 391 9647 387 1361 104,714
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r2 ¼
Z 1

�1
½gð/Þ � PT �2f ð/Þd/

¼
Z 1

�1
g2ð/Þf ð/Þd/� P 2

T ¼ ð1� PT ÞPT ð25Þ

For the CMC simulation, one samples a sequence of /i,

i ¼ 1; 2; . . . ;N . If /i is less than or equal to Tq=L, then
set gð/iÞ equal to unity. Otherwise, set gð/iÞ equal to

zero, as illustrated in Fig. 9(a) for the case of T ¼ 250
days. We collect the scores from all N samples and

calculate the sample mean:

PT ;MC ¼ 1

N

XN
i¼1

gð/iÞ ð26Þ

For given parameters q ¼ 0:1 m/day, l/ ¼ 0:3, r/ ¼
0:03, i.e., CV/ ¼ 10%, and L ¼ 100:0 m, Eq. (23) reduces

to PT ¼ Uð�10:0þ T=30Þ. Table 2 gives PT values ob-

tained from the analytical solution, i.e., Eq. (23), for
different T values. The table also gives the number of

simulations required to estimate PT using the CMC

simulation (NMC), within �10% of the exact values.

From Table 2, it is seen that, with the decrease of

parameter T (for T less than or equal to the mean travel

time 300 days), the probability PT ¼ P ðt < T Þ decreases
dramatically, and the number of realizations required to

predict PT using CMC increases significantly. For in-

stance, to predict probability P ðt < 100 daysÞ with 10%

accuracy will require over seven trillion realizations,

which is clearly beyond capability of any computational

scheme at the present time. The reason is that, for the

given parameter values, the value of ftðt ¼ 100 daysÞ or
equivalently the value of f ð/ ¼ 0:10Þ is 1.31 · 10�11,

which is so small that it is almost impossible to take a

sample / from f ð/Þ such that / < 0:1. Another problem

encountered in this kind of simulations is that currently

it is difficult to generate such a large number of random

numbers without repetitions. Although theoretically

some algorithms, such as ran2ðÞ as presented in [12],

have a period longer than 1018, in a machine of 32-bit
values of integers there are no more than 231 ¼
2,147,483,647< 1010 positive signed integers. Thus in a

sequence of 1010 such integers there must be repetitions.

It should be noted that the computational burden (the

number of simulations required) will be even larger if we

need more accurate predictions. For example, if we re-

duce � ¼ 0:1 to 0.05, i.e., 5% precision, we have to in-

crease the sample size by a factor of four.
Now instead of taking samples from f ð/Þ, we use the

importance sampling technique and take samples /i,

i ¼ 1; 2; . . .N , from an importance pdf f1ð/Þ of normal

distribution Nðl/;IS; r
2
/;ISÞ. To preserve the mean, we

have to define a new score function g1ð/Þ ¼ gð/Þf ð/Þ=
f1ð/Þ, which is shown in Fig. 9(b) for the cases of

T ¼ 250 days. Certainly, taking samples from f1ð/Þ such
that / < 0:25 is much easier than taking them from
the original density f ð/Þ, thus the sample size can be

reduced.

After we sample /i, i ¼ 1; 2; . . . ;N , from f1ð/Þ, we
can estimate PT by

PT ;IS ¼
1

N

XN
i¼1

g1ð/iÞ ¼
1

N

XN
i¼1

gð/iÞf ð/iÞ=f1ð/iÞ ð27Þ

The variance of the new score function g1ð/Þ under

distribution f1ð/Þ can be derived as
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Fig. 9. Pdf and score function: (a) original, and (b) modified.

Table 2

Number of simulations required for different values of T

T PT NMC NMT Nopt

300 0.500 1.00·102 100 100

250 4.78· 10�2 1.99· 103 202 151

200 4.23· 10�4 2.33· 105 376 285

150 2.87· 10�7 3.49· 108 567 437

100 1.31· 10�11 7.64· 1012 767 596

50 3.93· 10�17 2.54· 1018 970 759
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r2
IS ¼

Z 1

�1
½g1ð/Þ � PT �2f1ð/Þd/

¼ 1ffiffiffi
A

p
r2
/;IS

r/
exp

B2=A� C
2r2

/r
2
/;IS

 !
U

ffiffiffi
A

p
ðTq=Lþ B=AÞ
r/r/;IS

 !

� P 2
T ð28Þ

where A ¼ 2r2
/;IS � r2

/, B ¼ r2
/l/;IS � 2r2

/;ISl/, C ¼
2r2

/;ISl
2
/ � r2

/l
2
/;IS. The variance of the estimator PT ;IS

is r2
IS=N . In contrast to (25), the variance r2

IS can be

reduced by properly choosing l/;IS and r2
/;IS of the

importance density function f1ð/Þ. Notice that the ex-

pression for A implies r2
/;IS P r2

/=2.
Theoretically, the optimal density function can be

determined by finding l/;IS and r2
/;IS such that r2

IS in Eq.

(28) is minimized. However, it is not easy to directly

minimize r2
IS in Eq. (28). We utilize the large deviation

theory (LDT) and find that that the optimized impor-

tance density is a Gaussian distribution NðTq=L; r2
/Þ, i.e.,

an MT from the original density Nðl/; r
2
/Þ, which is

consistent with a previous result that for the Gaussian

distribution, the LDT approach is the same as MT [14].

To confirm this numerically, we computed a series of r2
IS

based on Eq. (28) with different values of l/;IS and r2
/;IS

for two particular values of T ¼ 100 and 250 days. Thus
the probability of travel time t < T for these two T
values corresponds to the probability of / < Tq=L ¼ 0:1
and 0.25, respectively. Fig. 10(a) and (b) show the per-

formance of importance density functions, where the

position of the dot in the figure stands for the mean

and standard deviation of the original density f ð/Þ.
The measure of performance in Fig. 10 is repre-

sented by contour maps of logðcÞ ¼ logðr2
MC=r

2
ISÞ ¼

logðNMC=NISÞ ¼ logðNMCÞ � logðNISÞ, showing the dif-

ference of the order of magnitude in the number of

Monte Carlo simulations required for the CMC simu-

lation and ISMC simulation. For instance, the curve for

the contour level logðcÞ ¼ 2 means that the number of

simulations required for the CMC simulation is two

orders larger than the number required for the ISMC

simulation.

Several observations can be made from Fig. 10. First
of all, for any given T and any fixed variance r2

/;IS,

sampling from distribution NðTq=L; r2
/;ISÞ is most effi-

cient, i.e., l/;IS ¼ Tq=L as predicted by the LDT. Notice

that the optimal distribution is not NðTq=L; r2
/Þ but a

slightly scaled Gaussian distribution with a smaller

variance r2
/;IS < r2

/. Intuitively, this is understandable

that while moving the mean of the sampling density to

the dominating point which has the highest probability
density (in the original density function) among other

points in the domain of interest, D, the efficiency is

further increased by ‘‘concentrating’’ the sampling dis-

tribution in the region around the dominating point. In

addition, when sampling distribution is overbiased, the

computational effort may increase rather than decrease,

by many orders in worst cases. Thirdly, when the sam-

pling mean is deviated form the optimized mean, the loss
of efficiency may be compensated by increasing sam-

pling variance r2
/;IS. Furthermore, the efficiency that the

IS techniques can achieve depends on the difference

between l/ and the optimized mean l/;opt ¼ Tq=L. For
example, for T ¼ 100 days, as illustrated in Fig. 10(a),

the optimized importance sampling can achieve about

10 orders of magnitude more efficient than the CMC

simulation. While for T ¼ 250 days, the efficiency gain
that the importance sampling can achieve is only about

1 order of magnitude. In the extreme case of T ¼ 300

days, l/;opt ¼ Tq=L ¼ 0:3 � l/, the ISMC simulation

does not have any efficiency gain over the CMC simu-

lation. In this case, any density that deviates from f ð/Þ
requires more computational effort.

Although the importance density derived from MT is

slightly different from the optimal density, they are in
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the same order of magnitude of efficiency compared to

the CMC simulation, as also shown in Table 2 for two

ISMC simulations with density functions derived from

MT (NMT) and from optimization (Nopt).

Numerical results from the CMC and ISMC simu-

lations are tabulated in Table 3, where the number in

parenthesis is the number of simulations used to com-

pute PT . As expected, for accuracy of 10%, 1000 simu-
lations is enough for the ISMC approach for T value as

low as 50 days, while a significant large number of runs

is required for the CMC simulation to achieve the same

level of accuracy even for T ¼ 200 days. For T < 150

days, we are not able to obtain a good estimation of PT
using CMC.

4. Summary and conclusions

In this study we introduced a new approach, impor-
tance sampling techniques, and demonstrated its use-

fulness in simulating flow and transport in random

porous media through two simple one-dimensional flow

scenarios. The study leads to the following conclusions:

(1) In simulating flow and solute transport in random

porous media, it is possible to save computational effort

tremendously by employing importance sampling tech-

niques. Because different random realizations may have
a different impact on the quantities being estimated,

realizations are taken from biased density functions

(importance density functions) rather than the underly-

ing original density functions such that those realiza-

tions with more ‘‘important’’ impact on estimated

quantities are sampled more frequently. The effect of

biased density functions is then corrected by weighting

simulation outputs such that the means of the quantities
being estimated are preserved. By choosing appropriate

importance density functions, the ISMC simulation can

be many orders of magnitude more efficient than the

CMC simulation. In some cases, using ISMC approach,

one can solve some problems that cannot be solved

using the CMC simulation.

(2) The importance density for the mean estimator is

chosen in such a way that the variance of the mean es-

timator is reduced while the mean is preserved. There-

fore, the density function that minimizes the variance of

the mean estimator does not necessarily minimize the
variance of the variance estimator. In other words, in

estimating both mean quantity and its associated pre-

diction variance, one may need to find different impor-

tance density functions.

(3) In practice, we may not need to find the optimal

importance function, an importance function that is

relatively close to the optimal one in general works very

well.
(4) Finally, we have emphasize that when the sam-

pling distribution is overbiased, the computational effort

may increase rather than decrease, by many orders in

worst cases.

In examples presented in this paper, we assume that

medium properties are random constant. To realistically

apply importance sampling techniques to the real world,

it is needed to extend this approach to correlated ran-
dom fields.

Appendix A

For one-dimensional horizontal saturated flow with

prescribed flux on the left and prescribed constant head
on the right, in a porous medium whose log hydraulic

conductivity is random constant, the governing equation

for head h can be written as

o2h
ox2

¼ 0 06 x6 L ðA:1Þ

with boundary conditions h ¼ H1 at x ¼ L and

Ksoh=ox ¼ q0 at x ¼ 0. The exact solution for the above

equation with boundary conditions is

hðxÞ ¼ H1 þ q0ðx� LÞe�Y ðA:2Þ

where Y ¼ hY i þ Y 0. Taking ensemble mean of Eq. (A.2)

yields the mean head

hhðxÞi ¼ H1 þ q0ðx� LÞe�hY iþr2Y =2 ðA:3Þ

Subtracting Eq. (A.3) from Eq. (A.2) gives

h0ðxÞ ¼ q0ðx� LÞe�hY i e�Y 0 � er
2
Y =2

h i
ðA:4Þ

which leads to the expression for head variance

r2
hðxÞ ¼ q20ðx� LÞ2e�2hY ier

2
Y er

2
Y � 1

h i
ðA:5Þ

Here we used the results hexpð�Y 0Þi ¼ expðr2
Y =2Þ and

hexpð�2Y 0Þi ¼ expð2r2
Y Þ, which are exact for normally

distributed Y 0.

Table 3

Comparison of PT resulted from different approaches

T PT PT ;MC ðNMCÞ PT ;IS ðNISÞ
300 0.500 0.500 0.500

250 4.78· 10�2 5.05· 10�2

(2000)

4.62· 10�2

(1000)

200 4.23· 10�4 4.53· 10�4

(300,000)

4.33· 10�4

(1000)

150 2.87· 10�7 – 2.64· 10�7

(1000)

100 1.31· 10�11 – 1.20· 10�11

(1000)

50 3.93· 10�17 – 3.58· 10�17

(1000)
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